Optimal control of parametrically excited linear delay differential systems via Chebyshev polynomials

نویسندگان

  • Venkatesh Deshmukh
  • Haitao Ma
  • Eric A. Butcher
چکیده

The use of Chebyshev polynomials in solving finite horizon optimal control problems associated with general linear time-varying systems with constant delay is well known in the literature. The technique is modified in the present paper for the finite horizon control of dynamical systems with time periodic coefficients and constant delay. The governing differential equations of motion are converted into an algebraic recursive relationship in terms of the Chebyshev coefficients of the system matrices, delayed and present state vectors, and the input vector. Three different approaches are considered. The first approach computes the Chebyshev coefficients of the control vector by minimizing a quadratic cost function over a finite horizon or a finite sequence of time intervals. Then two convergence conditions are presented to improve the performance of the optimized trajectories in terms of the oscillation of controlled states within intervals. The second approach computes the Chebyshev coefficients of the control vector by maximizing a quadratic decay rate of the L2 norm of Chebyshev coefficients of the state subject to linear matching and quadratic convergence conditions. The control vector in each interval is computed by formulating a nonlinear optimization programme. The third approach computes the Chebyshev coefficients of the control vector by maximizing a linear decay rate of the L1 norm of Chebyshev coefficients of the state subject to linear matching and linear convergence conditions. The proposed techniques are illustrated by designing regulation controllers for a delayed Mathieu equation over a finite control horizon. Copyright # 2005 John Wiley & Sons, Ltd.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Numerical Technique for the Analysis of Parametrically Excited Nonlinear Systems

A new computational scheme using Chebyshev polynomials is proposed for the numerical solution of parametrically excited nonlinear systems. The state vector and the periodic coefficients are expanded in Chebyshev polynomials and an integral equation suitable for a Picard-type iteration is formulated. A Chebyshev collocation is applied to the integral with the nonlinearities reducing the problem ...

متن کامل

Dynamical SyStemS with PerioDic coefficientS: analySiS anD control

A general framework for the analysis and control of parametrically excited linear/nonlinear dynamical systems is presented. This class of problems appears in the modeling of rotorcraft blades in forward flight, asymmetric rotor-bearing systems, automotive components such as connecting rods, universal joints, asymmetric satellites, fluids under gravity modulations, etc. These dynamical systems a...

متن کامل

Shifted Chebyshev Approach for the Solution of Delay Fredholm and Volterra Integro-Differential Equations via Perturbed Galerkin Method

The main idea proposed in this paper is the perturbed shifted Chebyshev Galerkin method for the solutions of delay Fredholm and Volterra integrodifferential equations. The application of the proposed method is also extended to the solutions of integro-differential difference equations. The method is validated using some selected problems from the literature. In all the problems that are considered...

متن کامل

The Numerical Solution of Some Optimal Control Systems with Constant and Pantograph Delays via Bernstein Polynomials

‎In this paper‎, ‎we present a numerical method based on Bernstein polynomials to solve optimal control systems with constant and pantograph delays‎. ‎Constant or pantograph delays may appear in state-control or both‎. ‎We derive delay operational matrix and pantograph operational matrix for Bernstein polynomials then‎, ‎these are utilized to reduce the solution of optimal control with constant...

متن کامل

Chebyshev Expansion of Linear and Piecewise Linear Dynamic Systems With Time Delay and Periodic Coefficients Under Control Excitations

In this paper, a new efficient method is proposed to obtain the transient response of linear or piecewise linear dynamic systems with time delay and periodic coefficients under arbitrary control excitations via Chebyshev polynomial expansion. Since the time domain can be divided into intervals with length equal to the delay period, at each such interval the fundamental solution matrix for the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006